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Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO), two successive satellite-
based missions starting in 2002, have provided an unprecedented way of measuring global terrestrial water storage
anomalies (TWSA). However, a temporal gap exists between GRACE and GRACE-FO products from July 2017 to
May 2018, which introduces bias and uncertainties in TWSA calculations and modeling. Previous studies have incor-
porated hydroclimatic factors as predictors for filling the gap, but most of them utilized artificial intelligence or pure
statistical models that generally de-trended TWSA and had no physical foundation. Thus, a physically-based recon-
struction is required for increasing robustness. In this study, we bridge the temporal gap by developing an empirical
hydrological model. The “abcd”model, a T-based snow component, and linear correction are utilized to represent run-
off generation, snow dynamics, and long-term trends. The testing results indicate that our hydrological model can suc-
cessfully reconstruct TWSA in tropical, temperature, and continental climates, although further improvement is
needed for arid climates. Our reconstruction for the gap achieves high accuracy and robustness as shown by the eval-
uations against sea-level budget and GLDAS-derived TWSA. Compared to previous studies using artificial intelligence
or statistical techniques, our hydrologicalmodel performs similarly in the gapfilling but does not involve de-trended or
de-seasonalized transformations, which will facilitate the combination of GRACE and GRACE-FO products and im-
prove the physical understanding of global TWSA.
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1. Introduction

The Gravity Recovery and Climate Experiment (GRACE) mission and its
successor GRACE Follow-On (GRACE-FO) provide a globalmeasure of terres-
trial water storage anomalies (TWSA) with unprecedented accuracy since
).
2002 (Kornfeld et al., 2019; Landerer et al., 2020; Tapley et al., 2004;
Tapley et al., 2019). The distance between two twin satellites is used to derive
the changes in global gravityfields, which enables the quantification of large-
scale water redistribution andmovement in different forms (Fatolazadeh and
Goïta, 2021; Mehrnegar et al., 2021; Tapley et al., 2019; Wang et al., 2020a;
Wang et al., 2020b). The GRACE products have been extensively applied in
the fields of environmental studies, earth science, and so forth. For instance,
the ice melt, ocean mass change, and groundwater depletion, previously
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measured using altimetry method or inferred frommodel simulation, can be
directly quantified from GRACE products (Chen et al., 2019; Luthcke et al.,
2006; Reager et al., 2016; Schlegel et al., 2016; Velicogna and Wahr, 2005;
Wang et al., 2018a). The occurrence of floods and droughts can also be
monitored or predicted using GRACE products (Houborg et al., 2012;
Reager et al., 2014; Satish Kumar et al., 2021; Sun et al., 2018; Wang et al.,
2020a). Moreover, in combination with the hydrological models, GRACE
data have been widely adopted to determine human impacts on TWSA
(Deng and Chen, 2017; Felfelani et al., 2017; Forootan et al., 2019; Li et al.,
2017), estimate water budget in typical catchments (Chen et al., 2020;
Swann and Koven, 2017), and improve hydrological model performance
using data assimilation (Houborg et al., 2012; Li et al., 2019a; Werth et al.,
2009).

Despite the extensive applications, a noteworthy drawback of GRACE
products is that there exists an approximate one-year gap (from July 2017
to May 2018) between GRACE and GRACE-FO missions, which inhibits
full utilization of the available TWSA measurements. Filling this gap is
thus crucial for more reliable and wider application of GRACE and
GRACE-FO products. Products from Swarm satellites and satellite laser
ranging (SLR) have been attempted to reconstruct TWSA and reproduce
TWSA variations at large scales (Löcher and Kusche, 2020; Richter et al.,
2021). However, the spatial resolution is not comparable to GRACE and
GRACE-FO datasets, resulting in large uncertainty for some small catch-
ments and high-latitudes (Li et al., 2021). In light of the close relationship
between TWSA and hydroclimatic variables, some studies used hydrocli-
matic factors as predictors and reconstructed GRACE-derived TWSA at
the gridded resolution. For example, drawing on a statistical model,
Humphrey et al. (2017) andHumphrey andGudmundsson (2019) used pre-
cipitation (P) and temperature (T) as explanatory variables and recon-
structed the de-seasonalized and de-trended TWSA. Sun et al. (2020)
employed a deep neural network with P, T, and soil moisture in the Global
Land Data Assimilation System (GLDAS)model as explanatory variables for
the prediction of TWSA. Li et al. (2020) and Li et al. (2021) reconstructed
global terrestrial water storage change (TWSC) and TWSA for the gap pe-
riod through various statistical methods. Moreover, regional TWSA recon-
structions have been accomplished for India (Sun et al., 2019), Africa
(Ahmed et al., 2019), and China (Jing et al., 2020).

Although many studies have been made to reconstruct TWSA using
hydroclimatic factors, they are based upon either AI models or pure
statistical models. The rationale behind AI models is yet not well un-
derstood, which may introduce uncertainty when applying them into
practice, especially when the values are out of the range of calibration
(Chollet, 2018). Some fundamental hydrological processes
(e.g., antecedent water storage) and the principle of water balance
are not fully accounted in the statistical models (Humphrey and
Gudmundsson, 2019). Moreover, some studies attributed the long-
term trend in TWSA to human activities, and thus only reconstructed
the de-trended TWSA based on hydrological variables (Humphrey
and Gudmundsson, 2019; Li et al., 2021). However, previous studies
have shown that the long-term TWSA trend in Australia, South
America, and Africa is likely caused by climate change and/or natural
environmental variability, which should be expressed from hydrocli-
matic variables (Boening et al., 2012; Gaughan and Waylen, 2012;
Rodell et al., 2018). Consequently, the de-trended transformation
may further undermine the physical basis of the reconstruction and
decrease its validity and suitability for potential applications of the
GRACE products.

Therefore, the main objective of this study is to fill the circa one-year
gap of GRACE and GRACE-FO products using an empirical hydrological
model. Hydrological processes are incorporated and raw series without
de-trended transformation is reconstructed. P, E, and T will be used as
three input variables to drive the water storage change, with a T-based
snow component added for the high-latitudes. The long-term trend that
may be caused by human activitieswill be simulated from linear correction.
The performance of the TWSA reconstruction will be tested against an arti-
ficial gap from July 2014 toMay 2015, and the reconstruction for the actual
2

gap will be examined against sea-level budget and GLDAS-derived TWSA.
This study is expected to advance the simulation of TWSA with hydrologi-
cal models and promote the full usage of GRACE and GRACE-FO products
in various fields.

2. Data and methods

2.1. Data

2.1.1. GRACE and GRACE-FO products
The Release 06 Version 02 GRACE and GRACE-FO datasets (RL06_v02)

based on mascon resolution by the Jet Propulsion Laboratory (JPL) were
used in this study, which span from May 2002 to February 2021
(Kornfeld et al., 2019; Landerer et al., 2020; Watkins et al., 2015; Wiese
et al., 2016; Wiese et al., 2019). The period from May 2002 to June 2017
was measured from GRACE, while the period from June 2018 to February
2021 was measured from GRACE-FO. The remaining 11 months from
July 2017 toMay 2018 constitute the gap period, and will be reconstructed
in this study. All forms of water, including surface water, soil moisture,
groundwater, snow and ice, are provided at a 0.5-degree resolution with
an appropriately 1-month time interval by JPL. The TWSA data in GRACE
and GRACE-FO are the anomalies and differ a constant from real terrestrial
water storage (TWS). The raw measurements in GRACE and GRACE-FO
products are unevenly distributed over time, with certain measurements
not located in the middle of a month. Therefore, cubic spline interpolation
was used to derive the TWSA in the middle of each month to represent
monthly mean value. Cubic Hermite and linear interpolation methods
were also examined, which produced very similar results (Fig. S1).

2.1.2. Climatic data
Precipitation (P), temperature at 2 m above land surface (T), and

evaporation (E) are used as three hydroclimatic driving factors of
TWS, with data collected from the European Centre for Medium-
Range Weather Forecasts (ERA5) dataset from January 1998 to
February 2021 at 0.25° × 0.25° resolution (Hersbach et al., 2020).
The P in ERA5 shows higher correlation with the observed monthly
precipitation than ERA-Interim, MERRA-2, and JRA-55 reanalysis
(Hersbach et al., 2020). Therefore, the ERA5 has been used to replace
the ERA-Interim for GRACE-based analysis (Chen et al., 2020; Eicker
et al., 2020; Sun et al., 2020). The meteorological data in ERA5 were
regridded to 0.5° × 0.5° resolution based on the first-order conserva-
tive remapping technique (Jones, 1999).

2.2. Hydrological model for reconstruction

2.2.1. Model for no-snow area (Model_no)
Our model is first introduced to simulate the hydrological processes

for no-snow areas (model_no), and then a T-based snow component is
added in Section 2.2.2 for snow areas (model_snow). The model_no is
based on the “abcd” model (Thomas, 1981) and Budyko hypothesis
(Budyko, 1974; Fu, 1981; Zhang et al., 2020). Two stages are assumed
and schematically shown in Fig. 1. In the initial stage of month t, some
terrestrial water has already been saved and is denoted by Ginitial, t.
Then, the difference between Pt and Et in month t is equal to the meteo-
rological input water to the ground (Fig. 1a). To consider the large un-
certainty in E estimation, here we applied a linear transformation to
correct Et, and Ginput, t is expressed as

Ginput,t ¼ Pt − α0 þ α1Etð Þ (1)

The Ginput, t and Ginitial, t constitute the available water for the following
runoff generation. Therefore, the summation of Ginput, t and Ginitial, t is termed
as water availability (Gavilable, t).

Gavilable,t ¼ Ginput,t þ Ginitial,t (2)



Fig. 1. Structure of the conceptual hydrological model at the initial (a) and final (b) stage. Dashed lines denote the component of snow formation.
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In month t, some water leaves the land as R, and Gavilable, t will decrease
toGfinal, t at the end ofmonth t (Fig. 1b). A supply and storage limit ofGfinal, t

was assumed to derive the equation of Gfinal, t (Thomas, 1981; Zhang et al.,
2008). Specifically, the boundary conditions with large storage capacity
(Gavilable

Max ! 0) and sufficient water supply (Gavilable
Max ! ∞) are

Gfinal ! Gavilable, as
Gavilable

Max
! 0 (3)

Gfinal ! Max, as
Gavilable

Max
! ∞ (4)

where Max is the maximum value for water storage. Yang equation, a
Budyko-like equation, is used here to simulate the relationship between
Gfinal, t and Gavilable, t with a parameter w (Yang et al., 2008).

Gfinal,t ¼ Gavilable,t
−w þMax−wð Þ−1

w,w > 0 (5)

The Gfinal, t will be used as the Ginitial, t+1 in the next month to represent
the accumulative influence of antecedent hydroclimatic drivers. The mean
monthly TWS is defined as the average of Ginitial, t and Gfinal, t

Gmean,t ¼ 1
2

Ginitial,t þ Gfinal,t
� �

(6)

The objective function is to find the minimum squared error between
the observed and simulated Gmean, t. However, GRACE can only measure
the anomalies of TWS that differ a constant from our prediction. Thus,
the mean difference between the predicted and observed values is removed
at first. Then, the squared error of TWSA is used as the objective function.

Diff ¼
∑
n

t¼1
Gmean,t

n
−

∑
n

t¼1
GGRACE,t

n
(7)

Squared Error ¼ ∑
n

t¼1
Gmean,t − Diff − GGRACE,tð Þ2 (8)

where GGRACE, t is the observed TWSA derived from GRACE in month t.
3

2.2.2. Model for snow area (Model_snow)
For snow-dominated areas, a T-based snow accumulation and melt

component is added on model_no to consider the impacts of snow on
TWSA (Hay and McCabe, 2002; Martinez and Gupta, 2010). The quan-
tity Ginput, t is first partitioned into water as rainfall (PRt) and snow
(PSt)

PRt ¼
0 ,Tt < Tsnow

Ginput,t
Tt − Tsnow

Train − Tsnow
, Tsnow ≤ Tt ≤ Train

Ginput,t , Train < Tt

8>><
>>:

(9)

PSt ¼ Ginput,t − PRt (10)

where Tt is the average temperature in month t, Tsnow and Train are the
thresholds of snow and rainfall formation. The P above Train will be
rainfall and the P below Tsnow will be snow. Part of P will be snow
when Tt falls into the range [Tsnow,Train]. The difference between
Train and Tsnow is defined as a new parameter for estimation

ΔT ¼ Train − Tsnow,ΔT > 0 (11)

Initial snow equivalent storage (GSinitial, t) in month t plus PSt con-
stitute the accumulated snow depth that releases snowmelt (SMt)

SMt ¼
0 , Tt < Tsnow

GSinitial, t þ PStð Þm Tt − Tsnow

Train − Tsnow
, Tsnow ≤ Tt ≤ Train

GSinitial, t þ PStð Þm ,Train < Tt

8>><
>>:

(12)

where parameter m is the snowmelt coefficient, representing the
maximum fraction of snow storage that could melt when Tt > Train

(Hay and McCabe, 2002). Based on the water balance principle, the
final snow water storage (GSfinal, t) is

GSfinal,t ¼ GSinitial,t þ PSt − SMt (13)

Image of Fig. 1
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The summation of PRt and SMt is used as the new input liquid water to
the catchment in snow-dominant areas (Gsnowinput, t).

Gsnowinput,t ¼ PRt þ SMt (14)

The remaining part of model_snow is the same as model_no except that
Ginput, t is substituted by Gsnowinput, t. The TWS in snow regions include both
liquid water and snow storage, and Gmean, t is

Gmean,t ¼ 1
2

Ginitial,t þ Gfinal,t þ GSinitial,t þ GSfinal,t
� �

(15)

The objective function is to find the least squared error between
GRACE-derived TWSA and Gmean, t after the subtraction of Diff as the
model_no.

2.2.3. Linear correction
One difficulty in reconstructing GRACE-derived TWSA is the trend that

is caused by human activities and ice melt (Li et al., 2021; Sun et al., 2020).
Domestic water consumption, dam construction, agricultural irrigation,
and ice melt have largely influenced TWSA in regions like the Sahara De-
sert, China, Mediterranean coast, India, and Greenland (Li et al., 2019b;
Rodell et al., 2018; Tapley et al., 2019). However, accurate and physical
quantification of their impacts at a global scale is challenging due to the
limitation of related data. Fortunately, bridging the gap and data availabil-
ity at both ends allow to infer the trend from temporal patterns. Thus, a
time-dependent linear correction was applied to consider the trend near
the gap. The observed TWSA (TWSAobs) from July 2016 to May 2019 (ex-
cluding the gap from July 2017 to May 2018) were linearly regressed to
the reconstructed TWSA (TWSArec) and year as follows

TWSAobs ¼ α0 þ α1TWSArec þ α2year (16)

where observations in two years around the gap were used for calibrating
the parameters. The component expressed as a function of year can be ex-
tended to the gap to quantify the trends relating to the factors that are not
incorporated in the hydrological model, such as domestic water consump-
tion, dam construction, and agricultural irrigation. As a result, the recon-
structed TWSA in the gap period using hydrological models were linearly
corrected using Eq. (16).

2.2.4. Parameters estimation
Themodel in this study was applied at the 0.5-degree resolution, which

is the same as the resolution in GRACE dataset provided by JPL (Wiese
et al., 2019). An “L-BFGS-B" method was used to estimate parameters
(Byrd et al., 1995), with feasible bounds α0 ∈ [−50,50], α1 ∈ [0,2], w ∈
[0,5], Max ∈ [0,7000], Train ∈ [−10,10], ΔT ∈ [0,50], and m ∈ [0,1]
from previous hydrological studies (Gnann et al., 2019; Long et al., 2020;
Martinez and Gupta, 2010; Zhang et al., 2020). The antecedent 52 months
(January 1998 to April 2002) were used as a burn-in period for training
Ginitial, 1 and GSinitial, 1.

2.3. Evaluation metrics

Three metrics were used to access the reconstruction performance in
calibration and validation periods, including the Nash-Sutcliffe efficiency
(NSE; Nash and Sutcliffe (1970)), Pearson correlation coefficient (CC),
and rootmean square error (RMSE), representing the ratio of explained var-
iance, linear correlation, and mean error between predicted and observed
values, respectively. The closer the NSE and CC are to 1, the better the per-
formance. The closer the RMSE to 0, the better the performance.
4

3. Reconstruction performance for an artificial gap

3.1. Performance evaluation

An artificial gap from July 2014 to May 2015 is assumed as validation
period for evaluating the reconstruction performance of the hydrological
model. The GRACE-derived TWSA fromMay 2002 to June 2017, excluding
the artificial gap, are used for calibration. The structure of the artificial gap
is similar to the real gap between GRACE and GRACE-FO, such that the re-
construction performance in the artificial gap can reflect the model accu-
racy for filling the real gap. Model_snow is only applied to the regions
where monthly T is below 1 °C for at least 1 month in the study period.
The areas where model_snow is not applied may not be largely affected
by snow cover from remote sensing (Hall et al., 2002), and model_snow is
the same as model_no.

The evaluation performance of the hydrological model in the calibra-
tion (May 2002 to June 2017 excluding the artificial gap) and validation
(artificial gap from July 2014 to May 2015) periods are shown in Figs. 2
and 3, respectively. The performance in the calibration period is adequate
in terms of all three metrics. NSE is larger than 0.5, and the CC is larger
than 0.7 in most areas (Figs. 2a-c and 3a-c). In the validation period,
model_no shows the best performance mainly in northern South America,
eastern Northern America, central Africa, India, Europe, and southern
China (Fig. 2d-i). Model_snow performed the best mainly in northern
Asia, Europe, Canada, and central Antarctica (Fig. 3d-i). Snow accumula-
tion is an important component in these regions and the incorporation of
T indeed improves the performance compared with model_no. The differ-
ence betweenNSE and CC indicates that the hydrologicalmodel can predict
the short-term variations of TWSA but may not be accurate for the long-
term trend, which shows the necessity of correction for trends.

The linear correction, which is calibrated from July 2013 toMay 2016 ex-
cluding the artificial gap, largely improves theNSE andRMSE (Figs. 2g-i, 3g-i,
and S2), and reveals that considering the trend is necessary in order to im-
prove the performance. Specifically, linear correction increases NSE by
0.3 at 59.9% and 48% of grids, and decreases RMSE by 3 mm at 67.0% and
49.1% of grids for model_no and model_snow, respectively. Meanwhile, the
RMSE nearly remains the same for the grids with decreasing NSE, suggesting
the robustness of linear correction (Fig. S2). The improvement in perfor-
mance mainly occur in polar regions, North America, north Africa, eastern
Asia, and southern Australia, where hydrological model does not perform
well. Linear correction may supplement the hydrological processes, such as
ice melt, human water consumption, and groundwater that were ignored in
current hydrological model. A longer period was also tested for linear correc-
tion and the evaluation metrics are nearly the same (Figs. 2j-l and 3j-l). Thus,
the trend has been sufficiently trained from two years around the gap.

The parameters formodel_no andmodel_snow are shown in Figs. S3 and
S4. From the values of α0 and α1, ERA 5 reanalysis may underestimate E in
high-latitudes and overestimate that in low- and mid- latitudes in TWSA
analysis. Parameter w, representing runoff generation, ranges from 0 to 2,
which are smaller than regional studies (Yang et al., 2008; Zhang et al.,
2020). The reason may be that E has been removed before runoff genera-
tion, and thus the ratio of final water storage to storage capacity decreased.
TheMax is close to 2000mm (i.e., initial values for parameters estimation),
andmay not play an important role in current model because anomalies are
used and absolute values in TWS do not impact our results. Other initial
values, including 1000 mm and 4000 mm, were also tested for Max, and
the evaluation metrics are very similar. Train and ΔT are close to 0 and
6 °C, which are consistent with snow dynamics from regional studies
(Hay and McCabe, 2002; Martinez and Gupta, 2010). Values of m demon-
strate that snow is more likely to melt when Tt > Train in high-latitudes.

The TWSA in arid climates is not well predicted in all models, such as cen-
tral Australia, central contiguous United States, and Mongolia. The main rea-
son may be that the GRACE product includes large uncertainty and shows a
small signal-to-noise ratio in arid areas (Long et al., 2015; Sun et al., 2020).
Other areas also demonstrate low levels of performance, such as eastern
Asia, northern India, and southern South America. Uncertainty in E may



Fig. 2. The NSE, CC, and RMSE of model_no for the artificial gap in the calibration period (a-c), validation period before linear correction (d-f), validation period after linear
correction from July 2013 to May 2016 (g-i), and linear correction from July 2012 to May 2017 (j-l).
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account for the errors, because this study only uses reanalysis data and may
include biases in estimation (Scanlon et al., 2018; Sridhar et al., 2019).
Long-term drought may also cause abnormally low TWSA and bring difficul-
ties forwater storage simulation (Satish Kumar et al., 2021). Human activities
such as dam construction, water diversion project, and agriculture irrigation,
may anthropogenically change natural water movement and additionally in-
crease the uncertainty for reconstructions in both arid and humid climates (Li
et al., 2019b; Rodell et al., 2018; Zhang et al., 2019b).

3.2. Selection of the best model

Themodel with the largest NSE in the validation period was selected as
the best one for bridging the gap (Fig. 4a, b). The results after linear correc-
tion were used because of the improvement in evaluation metrics and the
incorporation of trends. In general, the selection is in accord with the prop-
erties of hydrological models. For tropical and temperate climates,
model_no is mostly used. Model_snow is mainly used for high-latitude re-
gions. The evaluation metrics indicate that the CC is larger than 0.5 in
most areas. NSE are larger than 0.5 in low- and mid-latitudes, and larger
5

than 0 for many arid regions (Fig. 4c-e). However, the performance in re-
gions around Greenland, central Australia, middle-eastern Asia, and south-
ern and northern Africa deserves further improvements.

Time series of reconstructed TWSA from the best model in seven conti-
nents are shown in Fig. 5. The hydrological models successfully recon-
structed the TWSA in Australia, Southern America, and Europe near the
gap (Fig. 5c, e, and g). The linear correction corrects the trend around the
gap and achieves good performance in the remaining continents. For exam-
ple, the decreasing TWSA in Antarctica is mainly caused by ice melt in the
region of Amundsen Sea Embayment (Mémin et al., 2015; Tapley et al.,
2019). The linear correction uses a time-dependent component to represent
ice melt and thus simulate TWSA in Antarctica with NSE = 0.91 (Fig. 5f).
The performance in seven continents indicates that our reconstructions
are available for large-scale analysis.

3.3. Comparison with previous reconstructions

The performance of our hydrological model is similar to previous global
reconstructions using the AI (Li et al., 2021; Sun et al., 2020). The Pearson

Image of Fig. 2


Fig. 3.TheNSE, CC, andRMSEofmodel_snow for the artificial gap in the calibration period (a-c), validation period before linear correction (d-f), validation period after linear
correction from July 2013 to May 2016 (g-i), and linear correction from July 2012 to May 2017 (j-l).

X. Zhang et al. Science of the Total Environment 822 (2022) 153659
correlation coefficients are high in nearly all reconstructions, indicating
that the high-frequency variations can be sufficiently expressed from cli-
matic variables (Humphrey and Gudmundsson, 2019; Humphrey et al.,
2017; Li et al., 2021; Sun et al., 2020). The NSE of hydrological models
is better than the results from multiple linear regression models, but
slightly worse than the results from the AI models in the validation pe-
riod (Sun et al., 2020). About 62.5% of points achieve positive NSE in
this study, while they are approximately 75% and 40% using deep neu-
ral networks and multiple linear regression, respectively (Sun et al.,
2020). The RMSE are as good as the results from machine learning
with decomposition techniques in the validation period, with RMSE in
~80% grids less than 47 mm (Li et al., 2021). The reconstruction
using a statistical model does not provide evaluation metrics in the val-
idation period, but their performance is very similar to current results in
the calibration period (Humphrey and Gudmundsson, 2019). All recon-
structions indicate that the arid climates, Greenland, and the Gulf of
Alaska are the regions with poor performance, and ice melt, small
signal-to-noise ratio, and human activities may accounts for them
(Rodell et al., 2018). Overall, our hydrological model can largely
6

reproduce the performance from the AI and statistical models while
maintain the physical foundations.

4. Reconstruction for the gap

4.1. Bridging the gap

The gap between GRACE and GRACE-FO was filled using the best
model that was selected in Section 3.2 and linearly corrected from
July 2016 to May 2019. The performance in the calibration period is
shown in Fig. 6. The evaluation metrics are similar to those in the arti-
ficial gap, suggesting their similar performance in the validation pe-
riod. The time series of TWSA in seven continents are shown in Fig. 7.
The hydrological models successfully reconstructed the TWSA in
Australia and Southern America near the gap, and improves the perfor-
mance in Northern America, Antarctica, and Europe after linear correc-
tion. However, the performance in Africa and Asia deserves further
improvement due to the abnormal TWSA that is possibly caused by
human activities.

Image of Fig. 3


Fig. 4. Selection of the best model based on the NSE in the validation period. (a-b) The best model selected and its count. (c-e) Evaluationmetrics of the best model for filling
the artificial gap from July 2014 to May 2015. (f-h) Empirical Cumulative Distribution Function (ECDF) of the evaluation metrics.
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4.2. Evaluation with sea-level budget

Since the total volume ofwater on Earth can be viewed as a constant, the
changes in TWSA can be oppositely observed in oceanmass (Humphrey and
Gudmundsson, 2019). Meanwhile, sea-level budget estimates ocean mass
as the difference between global mean sea level and steric expansion, and
thus provides an independent way for evaluating the reconstructed TWSA
in the gap period (Dieng et al., 2017; Humphrey and Gudmundsson,
2019; Wang et al., 2018a). Here, we used sea level measurements from sat-
ellite altimeters (Beckley et al., 2017) and steric expansion fromArgo obser-
vations (Roemmich and Gilson, 2009), and compared the ocean mass
derived from sea-level budget with that from TWSA (Fig. 8). In the past de-
cades, decrease in TWSA accounts for main portions of sea level rise (Jacob
et al., 2012; Reager et al., 2016). Both ice melt and decline in endorheic
basin water storages contribute to ocean mass increase (Wang et al.,
2018a). The abnormal ocean mass decrease in 2010 and 2011 may be at-
tributed to the strong La Niña event, which affects global precipitation
and increases TWSA at some continents (Boening et al., 2012; Cazenave
et al., 2012). From 2010 to 2020, ocean mass derived from TWSA largely
follow the trend that is independently obtained from sea level budget, indi-
cating that TWSA in the gap period should also follow the sea level budget if
our reconstruction is reliable. In the gap period, the ocean mass inferred
from TWSA decreased in the first four months, and then increased and
reached its maximum in January 2018 (Fig. 8). The ocean mass derived
from altimetrymethod largely reproduces this pattern and reached a similar
magnitude, showing the fidelity of TWSA reconstruction at both global and
decadal scales.
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4.3. Evaluation with the TWSA in GLDAS-Noah

The TWSA in the GLDAS-Noah model has a good correlation with the
GRACE measurements (Long et al., 2014; Syed et al., 2008; Zhang et al.,
2019d), which has been used as a predictor for simulation (Jing et al.,
2020; Sun et al., 2020). Although some discrepancies are found between
GLDAS and GRACE (Scanlon et al., 2018), the GLDAS-Noah data can partly
verify our reconstruction. The Pearson correlation coefficients between
GLDAS-derived TWSA and GRACE-derived TWSA are shown in Fig. 9.
The GLDAS-derived TWSA includes all layers of soil moisture, snow water
equivalent, and canopy interception (Rodell et al., 2004; Sun et al.,
2020). In three periods with observations, the GLDAS-derived TWSA repro-
duces the variations in GRACE-derived TWSA inmost areas, while TWSA in
Greenland, northern and southern Africa, and eastern Asia was not well
simulated (Fig. 9a-c). Human activities largely decrease water storage in
northern Africa and eastern Asia (Rodell et al., 2018), while GLDAS-Noah
does not incorporate these perturbations. Additionally, ice melt and its cou-
pling with atmosphere and ocean are not fully included in GLDAS-Noah, re-
sulting in low correlation in Greenland. The reconstruction for the gap, to a
large extent, shows similar spatial patterns of correlation, indicating the re-
liability of our reconstruction at gridded resolution and on interannual
timescales (Fig. 9d).

5. Discussion

The gap between GRACE and GRACE-FO products was reconstructed
based on an empiricalmodel that attempts to simulate hydrological processes

Image of Fig. 4


Fig. 5.Time series of observed and reconstructed TWSA from the bestmodel before (Reconstruction_B) and after (Reconstruction_A) linear correction in seven continents and
globe. The gray area denotes the artificial period (July 2014 to May 2015). The numbers at the bottom left are the NSE before (black) and after (red) linear correction.
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in no-snow and snow-covered regions separately. Compared with previous
studies that employed the AI or pure statistical models (Humphrey and
Gudmundsson, 2019; Humphrey et al., 2017; Li et al., 2021; Sun et al.,
2020), the main advantage of our approach is that physical dynamics are ex-
plicitly incorporated, meanwhile our model achieved similar performance at
gridded, continental, and global scales. Current GRACE and GRACE-FO prod-
ucts only cover a period of less than 20 years, and many extreme TWSA
events, such as 1998 floods in China, did not occur in the observational pe-
riod and thus are not sufficiently calibrated in AI models. Thus, the error-
Fig. 6. The NSE, CC, and RMSE of model_no (a-c) and mod
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correction learning algorithm inAImodels is likely to bear large uncertainties
for extreme events (Chollet, 2018). The physically-based hydrological
models, in contrast, are more robust under such circumstances. In the future,
more physically-based hydrological models may be developed and calibrated
against GRACE-based TWSA, so as to explore the possibility of reconstructing
or predicting TWSA.

Another advantage of this study is that the rawmeasurements, rather than
the de-trend andde-seasonalized time series, were reconstructed,which leads
to the direct combination with original GRACE-based observations. Previous
el_snow (d-f) for the real gap in the calibration period.

Image of Fig. 6
Image of Fig. 5


Fig. 7.Time series of observed and reconstructed TWSAbefore (Reconstruction_B) and after (Reconstruction_A) linear correction in seven continents and globe. The gray area
denotes the gap period from July 2017 to May 2018. The numbers at the bottom left are the NSE before (black) and after (red) linear correction.
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studies mainly reconstructed and evaluated the performance of de-detrended
and de-seasonalized TWSA (Humphrey and Gudmundsson, 2019; Jing et al.,
2020; Li et al., 2021). However, the de-detrended transformation lacks of
physical justifications because many long-term trends in TWSA are caused
by anthropogenic climate change and/or natural environmental factors. In
addition, the performance in the validation period after adding the trend
Fig. 8. Comparison of ocean mass derived from TWSA and sea level budget as the differ
seasonalized and expressed as equivalent sea level in millimeter. The gray area denote
reconstruction.
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was not rigorously evaluated (Humphrey and Gudmundsson, 2019; Jing
et al., 2020; Li et al., 2021), which will cause uncertainties if the reconstruc-
tions are directly combined with GRACE and GRACE-FO products. Our re-
sults show that the negligence of trend may lead to large errors even when
the monthly variations have been well predicted (Fig. 5). Simply extending
the trend in the calibration period to the validation period may not be
ence between global mean sea level height and steric expansion. The values are de-
s the gap period from July 2017 to May 2018 during which the TWSA is from our

Image of Fig. 7
Image of Fig. 8


Fig. 9. The Pearson correlation coefficients between GLDAS-derived TWSA and GRACE-derived TWSA in three periods with observed GRACE data (a-c) and the gap period (d).

X. Zhang et al. Science of the Total Environment 822 (2022) 153659
appropriate because natural factors and human activitiesmay not persistently
impact TWSA to the same extent for over 20 years, not to mention till 1979
(Li et al., 2021). Therefore, the reconstruction of TWSA without de-trended
and de-seasonalized processes is required for increasing the physical founda-
tions and joint applications of GRACE and GRACE-FO products.

The evaluation for an artificial gap indicates the accuracy and feasibility
of our model reconstruction. In general, our model performs well for tropi-
cal, temperate, and continental climates where the results show high corre-
lations and NSE values with the measurements. However, our model
deserves improvement in central Australia, Sahara Desert, central America,
and eastern Asia. Previous AI models show similar drawback in simulating
TWSA in these areas (Li et al., 2021; Sun et al., 2020). One major reason is
because many factors that largely influence TWSA, such as human water
consumption, population, agricultural irrigation, economic development,
are not well incorporated in the models (Ahmed et al., 2014; Ramillien
et al., 2014; Rodell et al., 2018). For example, the South-NorthWater Diver-
sion Project and the strict water resources management system in China
have changed the groundwater dynamics in eastern Asia (Long et al.,
2020; Wang et al., 2018b; Xu et al., 2021), and current hydrological model
without these components is unable to accurately simulate TWSA in these
areas. Another major reason may be related to the small signal-to-noise
ratio in arid climates (Long et al., 2015; Sun et al., 2020). TWSA in Green-
land and Antarctic are also not well reconstructed because ice melt is an el-
ement that was not incorporated in our hydrological model. Nonetheless,
the linear correction helps improve the reconstruction of the trend. Our re-
construction is correlated well with the sea-level budget (Lumpkin et al.,
2020) and GLDAS-derived TWSA (Rodell et al., 2004), which validates its
overall accuracy.

The rationale behind our hydrological model is similar to some concep-
tual hydrological models, such as the “abcd” model (Thomas, 1981),
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temperature-based snow dynamics (Hay and McCabe, 2002; Martinez and
Gupta, 2010; Woods, 2009), and the Budyko-type equations (Fu, 1981;
Yang et al., 2008). However, other hydrological components still deserve
further attention in order to improve current models. For example, the lin-
ear correction method can only be used for filling a gap but cannot be
extended into the future or the past decades without known ends. Ground-
water accounts for a large portion of TWSA variations but is ignored in cur-
rent hydrological model. This ignorance brings uncertainty for parameters
calibration, and hinders us to incorporate groundwater depletion or replen-
ishment during drought or flood periods (Reager et al., 2014; Zhang et al.,
2019a; Zhang et al., 2015). Human water consumption and agriculture irri-
gation also influence TWSA through groundwater (Felfelani et al., 2017;
Xie et al., 2019; Zhang et al., 2019c; Zhang et al., 2020), while current
hydrologicalmodel simply quantifies this process from surfacewatermove-
ment and linear correction. Future studies may explore the role of ground-
water in TWSA variations and further incorporate groundwater movement
when groundwater observations become more available (Moeck et al.,
2020). Apart from that, applications of hydrological model determine
that our reconstruction is dependent on hydroclimatic information, and it
is thus inappropriate for precipitation reconstruction, evaporation estima-
tion, and data assimilation in hydrological models (Behrangi et al., 2017;
Houborg et al., 2012; Li et al., 2019a; Werth et al., 2009). Nonetheless, it
can be applied in the fields that do not require independence, such as
drought monitoring (Houborg et al., 2012; Sridhar et al., 2019), flood pre-
diction (Reager et al., 2014), sea level budget (Reager et al., 2016), and de-
tection of human activities (Rodell et al., 2018; Xu et al., 2021).Meanwhile,
most of them call for continuous analysis of soil moisture, drought propaga-
tion, and flood inundation based on antecedent variables, highlighting the
necessity of current reconstruction (Houborg et al., 2012; Reager et al.,
2016; Reager et al., 2014; Sridhar et al., 2019).

Image of Fig. 9
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Various sources of uncertainties are not assessed in this study, despite
that they are crucial in global hydrological studies. GRACE andmeteorolog-
ical data include uncertainties because of the measurement errors and pro-
cessing algorithms. For example, the selection of mascons or spherical
harmonics (SH) solutions in GRACE products brings differences for recon-
struction (Sun et al., 2020). The estimation of E is also challenging as
there are not many independent measurements for correction (Zhang
et al., 2018). For GRACE products, the short period of observations, signal
leakage errors, human perturbations, and the difference between TWSA
and TWS may further increase the uncertainties in parameters estimation
(Landerer and Swenson, 2012; Sun et al., 2020). The uncertainties in
GRACE also have spatial autocorrelation, which makes it difficult for simu-
lation under an uncertain framework (Humphrey and Gudmundsson,
2019). Systematically quantifying the uncertainties in hydroclimatic vari-
ables, model structure and parameters, and GRACE products will help im-
prove the hydrological models and the TWSA simulations.

6. Conclusions

In this study, a hydrologicalmodelwas explicitly developed to reconstruct
TWSA for the gap period between GRACE andGRACE-FO products from July
2017 to May 2018. The atmospheric drivers (precipitation and evaporation),
hydrological conditions (maximumwater storage), and snow dynamics were
incorporated into themodel through a combination of “abcd”model, Budyko
hypothesis, and a temperature-based snow component. The long-term trend
that may be attributed to human activities is simulated from a linear correc-
tion with values available at both ends of the gap. The performance of the hy-
drological model was rigorously tested through an artificial gap, and the
reconstruction for the real gap was independently validated against the sea-
level budget andGLDAS-derived TWSA.Our hydrologicalmodel explicitly in-
corporates physical processes and uses original data without detrending,
which make the TWSA reconstruction consistent with the original GRACE
andGRACE-FO products. Our study shows the potential of developing hydro-
logical models to simulate GRACE-based TWSA, which will advance the un-
derstanding of the forcing mechanisms of TWSA variations and the
application of GRACE products in the related disciplines.

Despite the rigorous evaluation of current reconstruction, this study ig-
nores human activities and many natural hydrological processes such as
groundwater, ocean current, reservoir operation, agricultural irrigation
and domestic water consumption. The performance in most dry and polar
climates also deserves further improvement. The linear correction for sim-
ulating the trend is appropriate for filling a gap, but is not suitable for
projecting or reconstructing TWSA over a decadal timescale. Future study
may further investigate the roles of natural hydrological processes and
human activities in TWSA variations, and establish an improved global hy-
drological model for modeling TWSA with GRACE products.
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